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Abstract Recently researchers have started using explainability techniques for sev-
eral different applications—to help foresee how amodel might operate in the field, to
persuade others to trust a model, and to assist with debugging errors. A large number
of explainability techniques have been published with very little empirical testing
to see how useful they actually are for each of these use cases. We discuss several
pitfalls one can encounter when trying to utilize explainability techniques. We then
discuss how recent work on the double descent phenomena and non-robust features
indicate that mechanistic explanation of deep neural networks will be very challeng-
ing for most real-world applications. In some cases, one may be able to use an easily
interpretable model, but for many applications deep neural networks will be more
accurate. In light of this, we suggest more focus should be given to implementing
out-of-distribution detection methods to detect when a model is extrapolating and
thus is likely to fail. These methods can be used in lieu of explainability techniques
for increasing trust and debugging errors.
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1 Introduction

There is growing interest in developing methods to explain the inner functioning of
deep neural networks. In this paper, we survey some of the pitfalls that are easily
encountered when trying to “explain an explanation”, some of which are not well
appreciated in our experience in medical AI and other applied areas of applied AI.
We first distinguish several motivations for interpretation in medical imaging. We
argue that mechanistic interpretation (i.e., elucidating the underlying mechanism,
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similar to how we explain human decision-making) is potentially the most useful for
increasing trust in AI. However, the recent discovery of double descent indicates that
deep neural networks such as the convolutional neural networks work through the
brute force local interpolation of data points. This is in contrast to popular narratives
that deep neural networks work by extracting a few high level rules that we might
explain in a few sentences [1]. As we will discuss, it follows that such networks
are intrinsically hard to interpret and also have very little chance at being able to
extrapolate outside their training distribution.

2 Motivations for Explanation

Different practitioners understand the term“intepretability” in differentways, leading
to a lack of clarity on the matter [2]. Here we take the terms “explanation” and
“interpretation” to be synonymous. We note several reasons we might be interested
in explanations:

– Prediction—it can be useful to be able to predict whether a model can generalize
or extrapolate to different conditions. For instance, will the model still be able to
function if there is increased scanner noise or cropping?

– Persuasion—often we want to convince clinicians or other stakeholders that they
can trust an AI system. Providing explanations can increase user’s trust in a model,
even if the explanations are not correct [3].

– Debugging—often we’d like to “open the black box” and understand why amodel
fails in particular cases. This can allow for iterative refinement.

Whilemany fine distinctions can bemade between different types of explanations,
we find two high level definitions to be useful. We define a descriptive explanations
as an account of model function which is descriptively accurate and relevant to the
end user [2]. By “descriptively accurate”, wemean that the explanation can reproduce
the input–output mappings of the model to some degree. This type of explanation is
typically boiled into natural language statement relevant to the domain of application.
This type of explanation can be distinguished from a mechanistic explanation,
which captures, at least approximately, the actual data manipulations occurring in
the model. Only mechanistic explanation accurately predicts what the network will
do when new data is presented.

Whether an explanation is descriptive or mechanistic can be distinguished by see-
ing if the explanation allows the user to predict themodel’s behavior when new inputs
are presented from outside the model’s training distribution or under counterfactual
testing where parts of the image are removed. Most present day methods do not work
very well in this regard, and thus fall under the category of descriptive explanation.
Recently, Hase et al. have performed tests with a large pool of human subjects to see
if different explainability techniques help users predict a neural network’s behav-
ior [4]. Out of the methods they compared, the only one that helped users for image
data was the “This looks like That” approach [5], a method which was designed with
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explainability in mind [4]. This is not surprising because the “Rashomon Effect”, [6]
which says that for any set of noisy data, there are a multitude of models of equiva-
lent accuracy but which differ significantly in their internal mechanism. To give an
example of why mechanistic explanation may be useful, consider task of pancreas
segmentation in CT images, which is challenging due to the variable shape and low
contrast of the pancreas relative to background tissues. A robust way of finding it
would be to locate a higher-contrast and easier to locate organ first, such as the
liver. The pancreas has a relative position to the liver which is fairly consistent. A
somewhat more brittle method would be trace the lower intestine to the duedenum,
to which the pancreas is attached. A very brittle method would be to look for the
pancreas in the center of the image.

3 Pitfalls

Recently, there has been a “cottage industry” of research showing problems with
saliency-basedmethods [7, 8] and related “heatmapping”methods such as layer-wise
relevance propagation [9]. At a high level, saliency maps may showwhere a model is
not looking, but not what is doing. Saliency maps for different classification outputs
may look similar, making it hard to distinguish why the network chose the output it
did [6]. Many outputs of saliency-based methods are very similar to the output of an
edge detector. Confirming this, it was found that, even if most of the later layers of a
neural network are randomized, saliencymaps do not changemuch [8]. Additionally,
if labels or features are scrambled and the model is retrained, the outputs do not
change [8] Indeed, it has been found that features “important” by the explanations
are actually no more important than randomly specified features [10].

Recently, Olah et al. hypothesized that deep neural networks are explainable
in the mechanistic sense, given enough careful study of what features each node
represents and the connections between them [11]. Olah’s et al.’s techniques are
based on activation maximization, where a neuron or group of neurons is related
to an interpretable feature (or more rarely, a combination of features). We see two
issues with this type of approach. The first is that pure activation maximization leads
to images which look like noise to the end user, so many “regularization” constraints
have to be applied (in particular, Olah uses constraints developed for the highly
publicized “deep dream” visualization). We are skeptical of this procedure due to its
artificial nature. The method is tailored to provide the end user a pretty picture rather
than remaining true to visualization the mechanism of the network. The “noise”
which naive activation maximization shows may actually be “non-robust” features
(see [12]). The second problem is that, if you take a linear combination of units
from a given layer instead of a single unit (or more precisely perform a random
rotation / change in basis), and maximize that instead, you end up with similar types
of explanations for what each unit is sensitive to [13]. While Olah has discussed this
issue in one of his previous works from 2017, in our view, it has not been adequately
addressed in his most recent work [11].
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There are many sources of variance which are often not taken into account when
performing explanations. In several different contexts, it has been shown that the
output of explainability methods often varies between test cases [14, 15]. When
interpretations are shown,many should be given and they should be randomly chosen
rather than “cherry-picked”. If possible, a holistic analysis should be done, averaging
interpretability results from many cases. Non-rigid registration to a reference case
may be useful here in certain contexts such as medical imaging. Another source of
variance is that in some cases visualizations for different train-test folds appears dif-
ferent, even when the resulting models are of equivalent accuracy [14, 16]. One way
of mitigating this issues is to average results over a few different visualization meth-
ods [17]. Another source of variation that effects interpretation is the hyperparameter
settings used. For instance, changing the LIME hyperparameters slightly has been
shown to significantly change the output of the visualization in some cases [18].

An alternative method of explanation is to train a “post-hoc” model which is sim-
pler and more interpretable to reproduce the output of the hard to interpret model.
For instance, a decision tree can be trained to reproduce the output of a CNN. This
procedure is the same as model distillation, where a large model is distilled on a
smaller one by running the large one on a large unlabeled dataset and training the
smaller model to reproduce the output of the larger one. Lillicrap & Kording show
that this technique has limits however, and distilled models for image classification
with equivalent accuracy are still quite large, with millions of parameters [19]. Thus,
distilling further to a small interpretable model will incur a large decrease in accu-
racy, and therefore, won’t be properly reproducing the input–output behavior of the
original model.

Several recent works add an “explanation branch” to “explain” the output of a
different branch of the network (the “prediction branch”) [20, 21]. For the case
of diagnosing lung nodules in chest CT, an example is illustrated in Fig. 1. The
explanation branch in this case was trained to predict several attribute scores which
clinicians consider important for lung nodule diagnosis. By seeing which attributes
were predicted, the idea is that this constitutes an “explanation” of how the network
arrived at its prediction. The issue with this sort of approach is that, it is not clear how
the two branches are related—in principle they could be computed independently.
In a recent work, we described a possible solution, which is to use a measure of
mutual information overlap to make sure the outputs of the explanation branch and
the prediction branch are related [22].

4 Why Mechanistic Interpretation Is Difficult

It has been noted for several years that the most successful deep learning models
have millions of parameters and appear to be vastly underdetermined, yet they still
generalize. More recently, it has been shown that the bias-variance trade-off breaks
down in large enough networks [23]. Belkin et al. call this the “double descent
phenomena” [23]. In the regime where deep neural networks operate, they are able
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Fig. 1 A network for diagnosing lung nodules on a CT scan is based on a previously published
work [20, 21]. The model contains an explanation branch in addition to the diagnosis branch, but
it is not clear how the computations underlying each branch’s output are related

to interpolate each data point in a “direct” way which does not exhibit the undershoot
or overshoot which is typical of overfitting [1]. An illuminating example of direct
fitting is given by Hasson et al. showing direct fitting of a parabolic function with
noise [1]. The computations involved are clearly local—similar to nearest neighbors
type computations—and the global trend (y ∝ x2) is not extracted. Because of this,
there is clearly no hope for extrapolation. One the other hand, the model is flexible
enough to fit any data. These observations call into question the popular idea that
deep neural networks work by extracting high level features that are of particular
interest, such as the whiskers of a cat. In actuality, it seems they are interpolating
between a very large number of small “non-robust” features, some of which are
particular to the training data [12]. It is tempting to tell “just-so” stories on how a
deep neural network is functioning using explainability methods. These stories can
mislead from what models are actually doing internally.

5 What Can Be Done?

The Rashomon effect (discussed above) suggests that in many cases, interpretable
models may exist which have equivalent accuracy [6]. This seems to be especially the
case with tabular data, where variants of linear regression often perform just as good
as deep neural networks. However, in many other domains, deep neural networks are
currently dominant. If the world is messy and complex, then neural networks trained
on real-world data will also be messy and complex. Still, there are some models
developed for images with interpretability in mind—one example is the “This Looks
Like That” approach developed by Rudin et al. [4], which references parts of training
examples.

Deep learning systems are notoriously bad at extrapolation, often failing spectac-
ularly when small distributional shifts occur. For instance, a deep learning system for
diagnosing retinopathy developed by Google’s Verily Life Sciences which reached
human-level diagnostic ability in the lab performed very poorly in field trials in Thai-
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Fig. 2 Illustration of a
simple approach to
out-of-distribution detection

land due to poor lighting conditions, lower resolution images, and images which had
been stitched together [24]. As another example, a deep learning system developed
byDeepMind to play Atari games was shown to fail if minor changes are made, such
as moving the paddle 3% higher in the game of Breakout [25]. In light of the fact that
deep neural nets work through a sort of brute force fitting, this brittleness is not very
surprising. If deep neural nets work by local interpolations over a massive number
of data points, this implies an inability to extrapolate [1]. Explainability techniques
can help understand how a model works within the dataset but they cannot help
understand what happens when the network is asked to perform outside the training
distribution. Fortunately, many techniques have been developed which can provide
a “warning light" if a network is being asked to extrapolate. These techniques go
under several different names—“applicability domain analysis”, “out-of-distribution
detection”, “change point detection”, and “outlier detection” [26]. A full analysis and
comparison of the many different techniques that have been developed is outside the
scope of this paper. A simple illustration of how many such methods work is shown
in Fig. 2. In Fig. 2, the “domain of interpolation” is delineated by projecting the
data into 2 dimensions and then looking at the convex hull of the data points. If the
input/latent vector of a test data point (projected into 2D) falls outside the convex
hull, then the model is extrapolating and a warning should be given. Typically a
dataset will form one or more clusters when projected into a low dimensional space.
It has been observed empirically that the average error for test data samples depends
on how close to the center of the training data clusters the test point lies [27].

6 Conclusion

In this work, we discussed some of the motivations for explanation in deep learn-
ing systems and distinguished descriptive explanations from mechanistic ones. We
believe mechanistic explanations to be the most important for increasing trust
and ensuring robustness to distributional shift. However, recent work on double
descent [22] and adversarial examples [12] indicate that mechanistic explanation is
difficult, since deep neural networks operate by brute force interpolation over large
datasets rather than by simple heuristics with high level features. We discussed a few
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possible solutions to the issues raised—using explicitly interpretable models, adding
an explanation branch, and implementing out-of-distribution detection methods.
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